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Within the two-dimensional repulsive t− t� Hubbard model, an attractive coupling in the d-wave-pairing
channel is induced by antiferromagnetic fluctuations. We investigate this coupling using functional
renormalization-group equations. The momentum-dependent d-wave coupling can be bosonized by the use of
scale-dependent field transformations. We propose an effective coarse-grained model for the Hubbard model
which is based on the exchange of antiferromagnetic and d-wave collective bosons.
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I. INTRODUCTION

The Hubbard model1–3 for strongly correlated electrons
has been used for a wide variety of phenomena, ranging from
high-temperature superconductivity4 to the metal-insulator
transition or antiferromagnetism. Solving this model is a ma-
jor theoretical challenge. This is due to the complexity of the
effective electron interaction, typically characterized by the
competition of different channels, such as the antiferromag-
netic or d-wave Cooper-pair exchange channels.5–13 So far,
the development of d-wave superconductivity is still a con-
troversial issue. Although several many-body techniques pre-
dict the emergence of a d-wave instability as leading insta-
bility in certain parameter ranges, see, e.g., Ref. 5, numerical
studies have difficulties to detect superconductivity5,14–20 as
a consequence of both finite-size and temperature limita-
tions.

The d-wave-pairing interactions are absent in the micro-
scopic Hubbard model. As a plausible mechanism leading to
d-wave pairing the exchange of effective antiferromagnetic
bosonic degrees of freedom has been proposed.6–11 This idea
was also suggested in Refs. 12 and 13 on the basis of a
phenomenological spin-spin susceptibility. The generation of
the interaction in the d-wave channel has been investigated
extensively by the functional renormalization-group study of
a momentum-dependent four-electron vertex.21–31 Our inves-
tigation employs nonperturbative flow equations based on
exact renormalization-group equations for the average action
or flowing action.32,33 It is complementary to studies of the
electron vertex by focusing explicitly on the role of the an-
tiferromagnetic bosons using the technique of partial
bosonization during the flow.34,35 We investigate the two-
dimensional Hubbard model with nearest- and next-nearest-
neighbor hoppings.

The aim of this paper is the derivation of an effective
coarse-grained model valid at intermediate length scales k−1

larger than the lattice distance a but smaller than the scale of
macroscopic physics. Our effective model will be based on a
description of the electron interactions by the exchange of
collective bosons. Near half filling a model with exchange of
antiferromagnetic boson has been used36,37 for a quantitative
computation of effective antiferromagnetic order below the
effective critical temperature Tc. It is advocated that in two

dimensions the size of the ordered domains increases expo-
nentially as the temperature decreases toward zero. For T
�Tc this size exceeds the size of a typical experimental
probe. For all practical purposes the physics is then the same
as for an ordered system. This includes the existence of long-
range fluctuations associated to Goldstone bosons. For Tc
�T�Tpc short-range antiferromagnetic order is found with a
typical domain size smaller than the experimental probe.
Here Tpc denotes the pseudocritical temperature below which
short-range antiferromagnetic order sets in. In this paper we
extend this approach by including the exchange of collective
bosons consisting of Cooper pairs in the d-wave channel.
They are assumed to be a crucial ingredient for the under-
standing of the Hubbard model away from half filling. Their
condensate would lead to superconductivity.

We have investigated earlier the phase transition to super-
conductivity in an effective d-wave exchange model.38 The
phase transition is found to be of the Kosterlitz-Thouless
type,39 characterized by �modified� essential scaling above
Tc, a jump of the superfluid density at Tc, and a gapless
excitation with temperature-dependent anomalous dimension
below Tc. The present paper constitutes a step for establish-
ing such an effective model as a coarse-grained version of
the microscopic Hubbard model. This mapping is not yet
complete since we concentrate here only on the generation of
the effective electron interaction in the d-wave channel and
its bosonization, while a more detailed investigation of the
propagators and interactions of the d-wave bosons is post-
poned to a subsequent publication.

The partially bosonized model opens the door for a
straightforward computation of the flow below the pseud-
ocritical temperature Tpc, where local order sets in and
higher-order boson interactions �e.g., corresponding to eight-
fermion interactions� play an important role. The low-
temperature region is notoriously difficult for a purely fermi-
onic description since the four-fermion interaction diverges
as the pseudocritical temperature Tpc is approached from
above. Also the important effect of higher fermionic opera-
tors can be taken into account most conveniently in a par-
tially bosonized formulation.36,37 In the partially bosonized
description the divergence of the four-fermion interaction is
due to a boson “mass term” or “gap,” changing from positive
to negative values during the flow. A negative mass term
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indicates local order, since at a given coarse graining scale k
the effective potential has a minimum for a nonzero value of
the boson field. If this order persists for k reaching a macro-
scopic scale, the model exhibits effectively spontaneous
symmetry breaking, associated in our model to antiferromag-
netism or d-wave superconductivity.

On the other hand, the partially bosonized formulation
introduces some bias into the renormalization-group proce-
dure by focusing on one or several boson exchange channels.
This can be circumvented in the purely fermionic
renormalization-group flow. However, this bias can be sys-
tematically reduced by the introduction of further bosonic
fields, which yield additional resolution for the description of
the interaction between the electrons. The present approach
constitutes a first step into this direction and is thus comple-
mentary to Refs. 21–31.

II. EFFECTIVE AVERAGE ACTION

We use a functional-integral framework and investigate
the effective average action �k,

32,33 which includes all quan-
tum and thermal fluctuations with momenta q2�k2. This is
realized by introducing an infrared cutoff Rk, which sup-
presses the fluctuations with q2�k2. This cutoff will be re-
moved at the end for k→0. For k=0 one recovers the usual
effective action—the generating functional for the one-
particle irreducible Green functions. For k→�, or k→�,
with � as a suitable ultraviolet scale, the fluctuation effects
are negligible and �� becomes the microscopic or classical
action S�. Therefore the scale-dependent average action �k
interpolates between the microscopic action S� and the full
quantum effective action �,

lim
k→�

�k � S�, lim
k→0

�k = � . �1�

The k-dependent flow of the average action obeys an ex-
act renormalization-group equation,32

�k�k��� =
1

2
STr���k

�2���� + Rk�−1�kRk� , �2�

where the “supertrace” �STr� runs over field type, momen-
tum, and internal indices and has an additional minus sign
for fermionic entries. The functional differential equation �2�
involves the full inverse propagator �k

�2���� �second func-
tional derivative of �k� regulated by Rk. Approximations to
the solution of Eq. �2� proceed by a truncation on the right-
hand side �rhs� with a suitable ansatz for the form of �k.

On the microscopic level, the Hubbard model is defined
as a purely fermionic model for electrons on a lattice. How-
ever, it is well known that bosonic degrees of freedom, e.g.,
Cooper pairs, also play an important role on larger length
scales. Hence, the question arises how the optimal descrip-
tion of the relevant degrees of freedom on all scales can be
achieved within a functional renormalization-group study.
On one hand, we want to accommodate the purely fermionic
model at high-momentum scales. On the other hand, we want
to study phase transitions and critical behavior for the mac-
roscopic physics. In the vicinity of the critical temperature
the long-range fluctuations are dominated by bosonic com-

posite operators. In order to exploit directly the importance
of the collective bosonic degrees of freedom, we employ
partial bosonization as motivated by a Hubbard-Stratonovich
transformation.40,41 Spontaneous symmetry breaking can
then be described simply by nonzero expectation values of
suitable bosonic fields. In a purely fermionic description the
four-fermion coupling often diverges for temperatures below
a pseudocritical temperature Tpc. This indicates the onset of
local order for T�Tpc. In the partially bosonized version this
simply translates to a vanishing “mass parameter” or gap for
the bosons and does not constitute an obstacle for investiga-
tions at T�Tpc.

Antiferromagnetic order for the two-dimensional Hubbard
model at half filling has been successfully described in this
framework.36,37 One investigates a bosonic field a which rep-
resents an antiferromagnetic fermion bilinear,

ã�X� = �†�X����X�ei	X. �3�

We use the Matsubara formalism with Euclidean time 
 com-
pactified on a torus with circumference �=T−1. The Matsu-
bara frequencies for the fermions are �= �2n+1�T, where
n�Z. Bosonic fields obey periodic boundary conditions such
that �=2nT. We use a compact notation X= �
 ,x�, Q
= �� ,q�, and

�
X

= 	
0

�

d
�
x

, �
Q

= T �
n=−�

� 	
−

 d2q

�2�2 ,

��X − X�� = ��
 − 
���x,x�,

��Q − Q�� = ��n,n��2�2��2��q − q�� . �4�

All components of X or Q are measured in units of the lattice
distance a or a−1. The discreteness of the lattice is reflected
by the 2 periodicity of the momenta q. The momentum 	
in Eq. �3� is given by

	 = �0,,� . �5�

Antiferromagnetic order is indicated by a constant non-
zero expectation value 
a�X��=a0. The simplest description
employs a quartic effective potential for a,

Ua�a� = m̄a
2� +

1

2
�̄a�2, �6�

with �=a2 /2. We will see that a vanishing of m̄a
2 corresponds

to a diverging effective four-fermion coupling, while nega-
tive m̄a

2 leads to a minimum of Ua at �0�0, and therefore
indicates spontaneous symmetry breaking. In the renorm-
alization-group treatment, m̄a

2 and �̄a become k-dependent
running couplings. A situation with m̄a

2�k��0 for kSR�k
�kSSB, m̄a

2�k�kSR��0 describes local order in domains with
linear scale between kSSB

−1 and kSR
−1, while no global antiferro-

magnetism is present. Macroscopic antiferromagnetic order
can be observed if the k-dependent location of the potential
minimum, �0�k�, stays nonzero as k−1 reaches the size of the
experimental probe. For m̄a

2�0 a crucial ingredient for the

determination of �0 is the quartic bosonic coupling �̄a. In a
purely fermionic language this corresponds to an eight-
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fermion vertex and is quite difficult to access.
We start with a Yukawa-type ansatz for the effective av-

erage action,

�k��� = �F,k��� + �a,k��� + �Fa,k��� . �7�

It describes fermion fields � and the “antiferromagnetic bo-
son field” a with �= �a ,� ,���. The fermionic kinetic term

�F,k = �
Q

�†�Q�PF�Q���Q� �8�

involves the inverse fermion propagator

PF�Q� = i� + ��q� , �9�

where

��q� = − � − 2t�cos q1 + cos q2� − 4t� cos q1 cos q2.

�10�

This is the classical inverse propagator for the Hubbard
model with next-neighbor hopping t and diagonal hopping t�.
The chemical potential is denoted by �. We have included
neither self-energy corrections for the fermionic propagator,
whose significance is still under debate,42–44 nor possible Po-
meranchuk instabilities, see, e.g., Ref. 23. In the present pa-
per we restrict ourselves to a parameter and scale range
where the spin correlations are maximal at the commensurate
antiferromagnetic wave vector �5�, e.g., we use t�=0 or
t� / t=0.05.

The purely bosonic term is described by a kinetic term
and a local effective potential Ua, cf. Eq. �6�,

�a,k =
1

2�
Q

aT�− Q�Pa�Q�a�Q� + �
X

Ua,k�a� . �11�

The kinetic term Pa involves the Q-dependent part of the
inverse antiferromagnetic propagator and is discussed in de-
tail in the Appendix. The Yukawa-type interaction term
couples the bosonic field to the fermions,

�Fa,k = − h̄a�
Q

aT�− Q�ã�Q�

= − h̄a �
K,Q,Q�

��K + 	 − Q + Q��a�K�

� ��†�Q����Q��� . �12�

This simplest truncation contains five k-dependent couplings,

namely, m̄a
2, �̄a, h̄a, as well as the wave-function renormal-

ization Aa, and the shape parameter D which parametrize
Pa�Q�.

Inserting our truncation into the exact flow, Eq. �2� yields

a coupled system of flow equations for m̄a
2, �̄a, h̄a, and Pa.

This is solved numerically. We start at the microscopic scale
k=� with initial conditions

m̄a
2�� = Um, h̄a�� = Um, �̄a�� = 0, Pa�Q��� = 0.

�13�

Since for this choice the effective action is quadratic in a, it
is easy to solve for a as a functional of �, ��. Reinserting

this solution into �� yields the well-known microscopic ac-
tion for the Hubbard model with four-fermion coupling U
given by U=3Um. Equivalently, we can use S�=�� in the
defining functional integral and perform the Gaussian inte-
gration over the “auxiliary” field a. This shows that our
model is equivalent to the fermionic Hubbard model.45

The equivalence between the Hubbard model and our de-
scription of antiferromagnetic boson exchange is exact, but
this particular form of partial bosonization is not unique. Due
to the possibility of a Fierz reordering of the local four-
fermion interaction, one could also start with a coupling both
in the charge and the antiferromagnetic channel on initial
scale or include even further channels.45 Distributing the lo-
cal four-fermion action differently into the bosonic channels
would alter the relation U=3Um. Since the different possible
versions of partial bosonization are all equivalent to the Hub-
bard model, one may question the reliability of our quantita-
tive results based on Um=U /3. In fact, mean-field theory
shows a strong dependence of the phase diagram on the
choice of partial bosonization.45 However, mean-field theory
neglects the effects of bosonic fluctuations and their inclu-
sion substantially reduces the dependence of the results on
the choice of bosonization.36,46 �Without truncations all exact
partial bosonizations should be exactly equivalent such that
the dependence on the choice can be used as a check of the
validity of approximations.� In this paper, we concentrate on
antiferromagnetic and d-wave fluctuations and do not include
the charge channel. The inclusion of charge fluctuations
within our bosonized language is in principle possible, and a
first study36 has indeed revealed that the results depend only
weakly on the initial distribution of the four-fermion interac-
tion into the antiferromagnetic and charge-density wave
channels.

In this paper we want to understand the physics associated
to fermion bilinears whose expectation value describes
d-wave superconductivity. We therefore have to extend the
simplest truncation �7�. We introduce in addition a bosonic

field d associated with the appropriate Cooper pairs d̃,

d̃�X� =
1

2
�TX −

ê1

2
���X +

ê1

2
�

−
1

2
�TX −

ê2

2
���X +

ê2

2
� . �14�

Here, ê1 and ê2 are the unit vectors in the plane and �= i�2.
�Equation �14� is used here only as a shorthand for the defi-

nition of d̃ in momentum space, Eq. �34�, since the Grass-
mann variables are not located at the lattice sites. A definition

of d̃ in position space and the appropriate Fourier transfor-
mation can be found, e.g., in Ref. 5.�

For the purely bosonic part we add in our truncation
solely a mass term of the d boson,

�d,k = m̄d
2�

Q

d��Q�d�Q� . �15�

The d-field couples to the fermions by a Yukawa term,
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�Fd,k = − h̄d�
X

�d��X�d̃�X� + d�X�d̃��X��

= − h̄d�
Q

�d��Q�d̃�Q� + d�Q�d̃��Q��

= −
h̄d

2 �
K,Q,Q�

��K − Q − Q��fd�q − q��

��d��K���T�Q����Q��� − d�K���†�Q�����Q���� ,

�16�

with Yukawa coupling h̄d. The d-wave form factor

fd�q� � cos
q1

2
− cos

q2

2
�17�

is kept fixed and shown in Fig. 1. We note the characteristic
change in sign under rotations of 90°. In our approximation,

only the momentum-independent coupling h̄d depends on the
scale k. The extended truncation has two further running

couplings, m̄d
2 and h̄d.

The initial values in the d-wave channel are

m̄d
2�� = 1, h̄d�� = 0. �18�

At the microscopic scale the d boson therefore decouples
from the fermions and the a boson, such that the microscopic
action is not modified. Our model remains exactly equivalent
to the Hubbard model. For k��, however, a nonzero

Yukawa coupling h̄d is generated, as shown in Fig. 2. “Inte-
grating out” the d boson by solving the field equations as a
functional of �, and reinserting into �k, yields an effective
four-fermion interaction in the d-wave-pairing channel,

�F,4
d = �F

d�
X

d̃��X�d̃�X�, �F
d = −

h̄d
2

m̄d
2 . �19�

Even though absent microscopically, this interaction is gen-
erated during the flow by the coupling to the antiferromag-
netic channel, as derived before in a purely fermionic
language.21–24,26–31 The effective coupling �F

d is shown
graphically in Fig. 2.

III. FLOW EQUATIONS

In addition to the truncation of the effective average ac-
tion, the regulator functions have to be defined. Our choice
for the fermionic regulator is inspired by the fact that at
nonzero temperature, the inverse fermionic propagator
PF�Q�=2i�nF+ 1

2 �T+�q has no zero eigenvalue. The tem-
perature itself acts as a regulator. We put this into use by the
regulator function36

Rk
F�Q� = i�Tk

T
− 1� = 2inF +

1

2
��Tk − T� , �20�

with

Tk
4 = T4 + k4,

�kTk = �k/Tk�3 → �1 if k � T

�k/T�3 if k � T .
� �21�

For k�T the cutoff Rk
F in the inverse fermion propagator

suppresses the contribution of all fluctuations with momenta
�q−qF�2� �k�2 even for T=0. It becomes ineffective for k
�T where no cutoff is needed anyhow. Basically, the tem-
perature T is replaced by the scale-dependent “temperature”
Tk—we cool the fermions down to the temperature of interest
during the flow. For k→� the cutoff diverges for all T such
that fermion fluctuations are completely suppressed, and we
start with the same initial conditions for all T. For k→0 the
cutoff function vanishes for all T and one recovers the quan-
tum effective action. For finite k−1, corresponding to a finite
macroscopic size of the probe or a finite experimental wave-
length, the temperature dependence of the cutoff is small for
k�T. In principal, different functional forms of Tk�k� can be
used for a test of the robustness of our truncation.

For bosons the situation is different. Here, long-range
bosonic modes may cause infrared problems which cannot
be regularized by the same type of regulator function we use
for the fermions. In particular, near a second-order phase
transition the bosonic correlation length diverges, which is
the same as a vanishing boson mass term. Our regulator Rk

a is
devised in order to cut off the long-range bosonic fluctua-

- 1
2fd(2l)

l1

l2�Π

�
Π
�����
2 0

Π
�����
2 Π �Π

�
Π
�����
2

0

Π
�����
2

Π

-1
-0.5

0
0.5
1

Π

�
Π
�����
2 0

Π
�����
2

FIG. 1. �Color online� d-wave form factor.
FIG. 2. �Color online� Generation of d-wave coupling. The solid

line shows the flow of the d-wave channel fermionic coupling �F
d

for T / t=0.13, � / t=−0.1, and t�=0. The dashed line shows the flow

of the Yukawa coupling in the d-wave channel h̄d, as given by
rebosonization for the same T, �, t�, and initial conditions �18�.
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tions. We specify the regularization of the a bosons in detail
in the Appendix. No regularization of the d bosons is needed
for the investigations in the present paper.

The flow equations for the couplings follow from projec-
tion of the flow equation �2� onto the corresponding mono-
mial of fields. For the mass parameter in the effective poten-
tial one derives36

�km̄a
2 = 2h̄a

2�
Q

�̃k
1

PF
k �Q�PF

k �Q + 	�
+

5

2
�̄a�

Q

�̃k
1

Pa
k�Q� + m̄a

2 ,

�22�

where

Pa
k�Q� = Pa�Q� + Rk

a�Q�, PF
k �Q� = PF�Q� + Rk

F�Q� .

�23�

The derivative �̃k acts only onto the explicit k dependence
introduced by the regulator functions and not on the cou-
plings. For the quartic coupling the flow equation reads

�k�̄a = 4h̄a
4�

Q

�̃k
1

�PF
k �Q�PF

k �Q + 	��2

−
11

2
�̄a

2�
Q

�̃k
1

�Pa
k�Q� + m̄a

2�2 . �24�

The flow of the kinetic term Pa�Q� is discussed in the Ap-
pendix.

The flow equation for the Yukawa coupling consists of a
direct contribution �

h̄a

d
and a contribution �

h̄a

rb
which comes

from rebosonization of regenerated fermionic couplings,34

�kh̄a = �
h̄a

d
+ �

h̄a

rb
. �25�

The first contribution reads

�
h̄a

d
= − h̄a

3�
Q

�̃k
1

PF
k �Q�PF

k �Q + 	��Pa
k�Q� + m̄a

2�
. �26�

The second contribution is discussed in Sec. IV together with

the flow equation for h̄d. For the mass parameter m̄d
2 for the d

boson we find

�km̄d
2 = − h̄d

2�
Q

�̃k

fd
2�2q�

PF
k �− Q�PF

k �Q�
. �27�

IV. GENERATION OF d-WAVE COUPLING

In this section we discuss how a coupling in the d-wave
channel is generated by the exchange of antiferromagnetic
bosons. This mechanism was suggested, e.g., in Refs. 5 and
23. At the microscopic scale � we have a local repulsive
four-fermion interaction described in our picture by the ex-
change of a bosons. No other channel is present. However,
even in the case of purely repulsive forces between the elec-
trons, the system may become unstable against Cooper-pair
formation.47 On lower momentum scales we indeed observe
a generation of an attractive coupling in a Cooper-pair chan-

nel which turns out to have a d-wave symmetry. This may
become critical in an appropriate parameter region.

We show in Fig. 3 the box diagrams exchanging a bosons.
They generate an effective momentum-dependent four-
fermion vertex �F

�4�,

�4 =
1

4 �
Q1,. . .,Q4

�F,����
�4� �Q1,Q2,Q3,Q4���Q1 − Q2 + Q3 − Q4�

���
��Q1����Q2���

��Q3����Q4� . �28�

This irreducible vertex has to be added to the effective inter-
action arising from the exchange of bosons if we account for
the total effective action between the electrons. It receives
further contributions beyond the box diagrams since it has to
include all contributions to the total four-fermion vertex
which are not accounted for by the antiferromagnetic boson
exchange in a given truncation. In particular, the fluctuations
of the antiferromagnetic bosons induce a momentum-
dependent piece in the effective Yukawa coupling between
the electrons and the a bosons. This momentum-dependent

part is not reproduced by our truncation where a constant h̄a
is evaluated for a particular choice of external momenta. We
have therefore added this piece to �4. Our computation of the
sum of �4 and the antiferromagnetic boson exchange agrees
with a purely fermionic computation in one-loop order, such
that the results are identical as long as U / t remains small.

The d-wave channel interaction is part of ��4��Qi�. Since
the coupling ��4��Qi� contains contributions from various
channels we will next project onto its contributions from the
d-wave and the antiferromagnetic channels. For spin rotation
invariant systems the spin structure of the four-fermion in-
teraction has the general form

�F,����
�4� �Q1,Q2,Q3,Q4�

= �F,s
�4��Q1,Q2,Q3,Q4�S��;�� + �F,t

�4��Q1,Q2,Q3,Q4�T��;��,

�29�

where S��;��=������−������ and T��;��=������+������

project onto spin singlet and spin triplet states in the fermion
pair channels, respectively. Here, we are interested in spin
singlet states and we choose Q1=−Q3�L= �T , l� and Q2
=−Q4�L�= �T , l��. For the projection onto the d-wave
Cooper-pair channel we use the fact that the d-wave coupling
changes its sign under rotation of 90°. We therefore define a
momentum-dependent d-wave channel coupling �F

d�l , l�� by

�

FIG. 3. One-loop corrections �box diagrams� to the four-fermion
interaction. Solid lines represent fermions and wiggly lines repre-
sent a bosons.
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�F
d�l,l�� = −

1

2
��F,s

�4��L,L�,− L,− L��

− �F,s
�4��R�L�,L�,− R�L�,− L��� , �30�

where R�L� denotes a rotation of the spatial components l of
L by 90°. For definition �30� we have kept L� fixed and
subtracted the same contribution after a rotation of 90° of the
spacelike components of L. For instance, the antiferromag-
netic channel and the s-wave channel are subtracted in this
way.

We compute �k�F
�4� and �k�F

d�l , l�� by taking the fourth
functional derivative of Eq. �2� with respect to the fermion
fields. Within our truncation this corresponds to the box dia-
grams in Fig. 3. We find that �k�F

d�l , l�� is well approximated
by the flow of a simple d-wave channel coupling �F

d of the
form

�F
d�l,l�� = fd�2l�fd�2l���F

d . �31�

In Figs. 4�a� and 4�c� we show the flow of the left-hand side
of Eq. �31� as a function of l for l�= �0,� �for k=� and with
appropriate overall normalization�. There is a good qualita-
tive agreement with the d-wave form factor displayed in Fig.
1. We determine the flow of �F

d by choosing l= � ,0�, l�
= �0,�, i.e., �k�F

d =�k�F
d�� ,0� , �0,��.

Next, we show how this fermionic quartic coupling can be
bosonized on all scales k. This means that we trade the four-
fermion coupling �F

d in favor of a Yukawa coupling of the d
bosons. After this transformation, the d-boson exchange in-
duces the effective interaction in the d-wave-pairing channel.

We achieve this reformulation by a variable transformation
in the functional flow equation �2�. The flow equation �2�
describes the scale dependence of �k at fixed fields �. We
will now switch to other k-dependent variables �k and derive
modified flow equations that describe the k dependence of �k
at fixed �k. For a suitable choice of �k this will realize the
desired bosonization.34,35

More precisely, we choose scale-dependent bosonic fields
Bk=Bk�� ,�� ,B ;k�= �ak ,dk ,dk

�� and perform the variable
transformation in the exact flow equation,

d

dk
�k��,��,Bk��Bk

= �k�k��,��,B��B=Bk
+ �

Q
 �

�ak�Q�
�k��,��,Bk���kak�Q�

+ �
Q
 �

�dk�Q�
�k��,��,Bk���kdk�Q�

+ �
Q
 �

�dk
��Q�

�k��,��,Bk���kdk
��Q� . �32�

This equation is our starting point for the construction of the
“perfect bosons”34 on all scales. The first term on the rhs is
given by Eq. �2�.

The scale-dependent boson fields are defined by adding
suitable fermion bilinears,

ak�Q� = a��Q� − �k
aã�Q� ,

dk�Q� = d��Q� − �k
dd̃�Q� . �33�

Here the fermion bilinears

ã�Q� = �
P

�†�P����P − 	 + Q� ,

d̃�Q� =
1

2�
P

fd�2p − q��T�P����Q − P� , �34�

correspond to the Fourier transforms of Eqs. �3� and �14�. In
Eq. �33�, we denote by a� and d� the original microscopic
fields appearing in the microscopic action ��. These are the
k-independent fields that are kept fixed in Eq. �2� or in the
first term on the rhs of Eq. �32�. The fermion fields are kept
scale independent and we infer

�kak�Q� = − �k�k
aã�Q� , �kdk

����Q� = − �k�k
dd̃����Q� .

�35�

l1 l1

l2 l2

l1 l1

l2 l2

(c) T/t = 0.5 , µ/t = −0.5 (d) T/t = 0.5 , µ/t = −0.5

(a) T/t = 0.5 , µ/t = −0.1 (b) T/t = 0.5 , µ/t = −0.1
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FIG. 4. �Color online� Momentum dependence of d-wave cou-
pling. In �a� and �c� we show the normalized momentum depen-
dence of the rhs of the flow equation for the fermionic coupling,
1
4 ��k�F

d�l , l�� /�k�F
d�. In �b� and �d� we display the residual coupling

after the subtraction of the bosonized part, 1
4 ��k�F

d�l , l�� /�k�F
d

− fd�2l�fd�2l��� �cf. Eq. �31��. We use t�=0 in all plots. Notice that
these plots are independent of U.
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The variable transformation in Eq. �32� induces other
Yukawa and four-fermion couplings, given in our truncation
by

d

dk
�k�Bk

= �k�k�B=Bk
− �

Q

��k�k
a��Pa�Q� + m̄a

2�ak�− Q� · ã�Q�

− �
Q

��k�k
d�m̄d

2�dk
��Q�d̃�Q� + dk�Q�d̃��Q��

+ �
Q

��k�k
a�h̄aã�Q� · ã�− Q�

+ 2�
Q

��k�k
d�h̄dd̃��Q�d̃�Q� . �36�

Here the couplings h̄a, h̄d, etc. correspond to suitable func-
tional derivatives of �k at fixed Bk.

For a suitable choice of �k
d, we can use the four-fermion

interaction in the d-wave-pairing channel generated by the
variable transformation in order to cancel a corresponding
piece �k�F

d generated by the diagrams of Fig. 3 in �k�k �B.
More precisely, we fix �k�k

d by the requirement

0 = �k�F
d + 2h̄d�k�k

d, �37�

where the first term is computed from Eqs. �2� and �28�–�31�.
The coupling �F

d �Bk
�l , l�� is defined similar to Eq. �30�. How-

ever, it is now given by the functional derivative of �k at
fixed Bk. This means that its flow is obtained from the flow
of �F

d�l , l�� �at fixed B� by subtracting the “bosonized piece”

�k�F
d�l,l���Bk

= �k�F
d�l,l�� − �k�F

d fd�2l�fd�2l�� . �38�

In particular, if we define �F
d �Bk

in analogy to Eq. �31�, one
has �k�F

d �Bk
=0. We show �k�F

d�l , l�� �Bk
in Figs. 4�b� and 4�d�

�in a suitable normalization where �k�F
d is divided out�. Com-

parison with Figs. 4�a� and 4�c� shows that the major part of
�k�F

d�l , l�� can indeed be absorbed by the bosonization. The
“residual part” �k�F

d�l , l�� �Bk
contains higher harmonics—the

dominant piece in Figs. 4�b� and 4�d� has a periodicity in
momenta with period  instead of the leading piece with
periodicity 2 in Figs. 4�a� and 4�c�. In principle, this re-
sidual interaction can be partially absorbed by a more com-
plex k-dependent field in Eq. �33�. We will not do this here
and simply neglect in our truncation the residual interaction
in �k�F

d�l , l�� �Bk
. As can be seen by a comparison of Figs. 4�b�

and 4�d�, the accuracy of this approximation gets better for
larger �� / t�. After the variable transformation, we can work
with a vanishing four-fermion coupling in the d-wave-
pairing channel.

From Eq. �32� we can now infer the additional contribu-

tions to the flow of the Yukawa coupling h̄d. It accounts for
the fact that after the variable change a leading contribution
to the four-fermion interaction is mediated by the exchange
of bosons and is no longer contained in �F. One obtains a
modified flow equation for the Yukawa coupling for the d
boson,

�kh̄d = �kh̄d�B + m̄d
2�k�k

d. �39�

Thereby inserting �k�k
d from Eq. �37� yields

�kh̄d = �kh̄d�B −
m̄d

2�k�F
d

2h̄d

�40�

for the d boson. In our truncation one has �kh̄d �B=0. The
numerical solution to this flow equation is shown in Fig. 2.
We can reconstruct the effective four-fermion interaction in
the d-wave-pairing channel by computing the tree diagram
from the d-boson exchange �cf. Fig. 5�,

�F,eff
d �Q1,Q2,Q3,Q4�

= −
h̄d

2

m̄d
2 fd�q1 − q3�fd�q2 − q4���Q1 − Q2 + Q3 − Q4� .

�41�

Similar as the d boson, the Yukawa coupling of the a
boson receives an additional contribution due to the re-
bosonization of the four-fermion interaction in the antiferro-
magnetic channel,36

�kh̄a = �kh̄a�B + m̄a
2�k�k

a. �42�

We define the projection onto the four-fermion interaction in
the antiferromagnetic channel by

�F
a =

1

8
�F,1221

�4� �0,	,0,− 	� �43�

and determine �k�k
a by

0 = �k�F
a + h̄a�k�k

a. �44�

This yields

FIG. 6. �Color online� Scale dependence of m̄a
2, m̄d

2, and Aa for
temperature above Tpc �T / t=0.12, solid lines� and below Tpc �T / t
=0.09, dashed lines�. We use � / t=−0.1, t�=0, and U / t=3.

ψ(Q2)ψ(Q4)

ψ∗(Q1)ψ∗(Q3)

d

�

FIG. 5. Effective four-fermion interaction in the d-wave-pairing
channel mediated by d-boson exchange.
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�kh̄a = �kh̄a�B −
m̄a

2

h̄a

�k�F
a = �

h̄a

d
+ �

h̄a

rb �45�

for the flow of the Yukawa coupling of the a boson. The first
contribution was given in Eq. �26�. The second contribution
comes from rebosonization and we find, in agreement with
Ref. 36,

�
h̄a

rb
= m̄a

2�
Q

h̄a
3�̃k

1

�Pa
k�Q� + m̄a

2��Pa
k�	 − Q� + m̄a

2�

�
1

PF
k �− Q�� 1

PF
k �	 − Q�

−
1

PF
k �Q�� . �46�

We have solved the flow equations for the couplings h̄a, h̄d,
m̄a

2, m̄d
2, Aa, and D numerically. In Fig. 6 we show the k

dependence of m̄a
2, m̄d

2, and Aa. For T�Tpc both m̄a
2 and m̄d

2

remain positive for all k. We show the temperature depen-
dence of the effective four-fermion couplings in the d wave
and the antiferromagnetic channel, �F

d and �F
a , in Figs. 7 and

8. Both couplings are evaluated for k=0.

V. PSEUDOCRITICAL TEMPERATURE

For T→Tpc the mass term m̄a
2 reaches zero at a nonzero

value of k, and therefore �F
a diverges. This feature extends to

all T�Tpc and signals the onset of local antiferromagnetic
order in domains of linear size k−1. For smaller k, the flow
has to be continued in the “spontaneously broken
regime,”36,37 where the minimum of the effective potential
occurs for nonzero a. In the present paper we do not continue
the flow beyond the scale where m̄a

2 vanishes but rather stop

once m̄a
2 reaches zero. The corresponding pseudocritical tem-

perature Tpc is shown in Fig. 9 as a function of the chemical
potential. We also show the dependence of Tpc on the Hub-
bard coupling U in Fig. 10. For U / t=3 and �= t�=0 we find
for Tpc a value that is about 30% smaller than in Ref. 36.
This is due to the different ansatz for the propagator of the a
boson and may be taken as an indication for the size of the
error. In the present work we restrict ourselves to Hubbard
couplings U / t�3 and to temperature T / t�0.02. In order to
extend the lines in Fig. 10 to smaller T one has to improve
our simple truncation of the frequency dependence of the
propagator of the a boson. This issue will be addressed in a
forthcoming work.

Another interesting quantity is the relative strength of the
effective four-fermion interaction in the d-wave pairing and
the antiferromagnetic channel. We plot the ratio

R =
�F

d

�F
a =

2h̄d
2m̄a

2

h̄a
2m̄d

2
�47�

in Fig. 11 for different values of �. In these plots the ratio R

first increases due to the generation of a nonvanishing h̄d and
subsequently decreases since m̄a

2 approaches zero or small
values. We see the tendency that the maximum of R in-
creases with increasing �.

Our present truncation does not remain valid for low k if

�� / t� becomes large. The reason is that Aa or �̄a reach zero

FIG. 7. �Color online� ln�−�F
d / t� for k=0 is plotted as a function

of T / t for T�Tpc=0.1004t, � / t=−0.1, and t�=0.

FIG. 8. �Color online� ln�−�F
a / t� for k=0 is plotted as a function

of T / t for T�Tpc=0.1004t, � / t=−0.1, and t�=0.

µ/t

Tpc/t

FIG. 9. �Color online� Pseudocritical temperature Tpc / t as a
function of � / t for U / t=3 and t�=0 �solid line� and t�=−0.05t
�dashed line�.

U/t

Tpc/t

FIG. 10. �Color online� Pseudocritical temperature Tpc / t as a
function of U / t for �=0, t�=0 �solid line�, and � / t=−0.12 and
t� / t=−0.05 �dashed line�.
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before either m̄a
2 or m̄d

2 vanishes. This means that our approxi-
mation for the momentum dependence in Pa�Q�, or for the
polynomial approximation for Ua, becomes insufficient. An
extended truncation can cure these problems, which will be
addressed in a future publication. In our figures the break-
down of the approximations can be seen by the end of the
curves in Figs. 9 and 11. The insufficiency of the truncation
is the reason why we cannot access the values of ��� and k
where R becomes large in the present paper.

VI. CONCLUSIONS

We have shown how the renormalization flow turns the
microscopic Hubbard model into an effective boson ex-
change model at intermediate length scales k−1. This “meso-
scopic” model is characterized by the exchange of collective
electron or electron-hole pairs, which are described by
bosonic fields. The most important channels are the ex-
change of electron-hole pairs of the antiferromagnetic type
�the a boson� and d-wave electron pairs �the d boson�. The
coupling of these bosons to the electrons is described by

Yukawa-type couplings h̄a and h̄d, which multiply the form
factors appropriate for the respective channels. The effective
model is characterized by the effective action, cf. Eqs. �7�,
�15�, and �16�, �=�F+�a+�Fa+�d+�Fd. Besides the
Yukawa couplings, important ingredients are the propagator
and the effective potential for the a bosons and the d bosons.

The effective boson exchange model has several coupling
constants, as h̄a, h̄d, m̄a

2, m̄d
2, as well as bosonic self-

interactions, and couplings parametrizing the bosonic propa-
gators �cf. Appendix�. These couplings depend on the mo-
mentum scale k at which the effective model is considered.
We may consider the effective boson exchange model as a
coarse-grained version of the microscopic Hubbard model
with coarse graining length k−1. Its couplings can therefore
be related to the couplings t, t�, and U of the Hubbard model,
and we have done so by the use of the functional renormal-
ization flow. This flow shows how an effective coupling in
the d-wave-pairing channel is generated by the fluctuations
of the a bosons.

One may also consider the effective boson exchange
model with arbitrary parameters. This can then be interpreted

as a generalization of the Hubbard model. The particular case

h̄a=0, where the a bosons play no role, has already been
discussed with the help of functional flow equations in Ref.
38. For low temperatures one finds superfluidity. The inves-
tigation of Ref. 38 has covered the critical behavior at the
phase transition and the low-temperature “ordered phase.”
The phase transition was found to be in the universality class
of the Kosterlitz-Thouless phase transition. Reinterpreted in
the context of our investigation of the Hubbard model, the
model38 becomes a valid approximation if at some scale k the

antiferromagnetic channel coupling �F
a =−h̄a

2 /2m̄a
2 becomes

much smaller than the d-wave coupling �F
d =−h̄d

2 / m̄d
2. The

corresponding large values of R are reached, however, only
in a region for � / t where our present approximation for the
propagator of the antiferromagnetic bosons becomes insuffi-
cient.

As we have mentioned in Sec. V, our present investigation
is limited to the range of k where the propagator for the a
boson is well described by the approximation discussed in
the Appendix. In particular, this requires Aa�0. We implic-
itly assume that commensurate antiferromagnetic fluctua-
tions are dominant as compared to the incommensurate anti-
ferromagnetism or ferromagnetism. The latter plays an
important role in other parameter ranges of this model.27,48–51

Within the present truncation the positivity of Aa is not real-
ized for all �, t, t�, U, and T if k becomes small. Also the
simple dependence of Pa on the Matsubara frequency does
not remain appropriate for T→0. We will discuss a more
general form of Pa, as well as a momentum-dependent
propagator for the d boson, in a forthcoming work. We are
confident that a suitable truncation of the functional
renormalization-group equations will give access to the
whole phase diagram of the Hubbard model.
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APPENDIX: BOSONIC PROPAGATOR

In order to gain some first information on the general
shape of the momentum-dependent piece in the inverse
propagator for the antiferromagnetic boson, we compute the
contribution from the fermionic loop

�Ga
−1�Q� = �

P

h̄a
2

PF�Q + P + 	�PF�P�
+ �Q → − Q� .

�A1�

The general features of this one-loop contribution will be
used in order to motivate a suitable truncation. Performing
the Matsubara sum one finds

FIG. 11. �Color online� Relative strength of d-wave and antifer-
romagnetic coupling. The ratio R, defined in Eq. �47� is plotted for
four parameter choices: �1� T / t=0.1235, �=0 �2� T / t=0.115, � / t
=−0.09 �3� T / t=0.08, � / t=−0.15, and �4� T / t=0.05, � / t=−0.3.
We use U / t=3, t�=0.
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�Ga
−1��,q�

= −
h̄a

2

2
	

−

 d2p

�2�2

tanh �p

2T
� − tanh �q+p+

2T
+

i�

2T
�

�p − �q+p+ − i�

+ �Q → − Q� . �A2�

In Fig. 12 we plot the frequency dependence at vanishing
spatial momenta while the dependence on spatial momenta at
vanishing frequency is plotted in Fig. 13�a�.

We approximate the inverse bosonic propagator at zero
frequency by

Pa,k�0,q� = �Ga,k
−1 �Q� + m̄a

2�� − m̄a
2�k = Aa

�q�2D2

D2 + �q�2 ,

�A3�

where �q�2 is defined as �q�2=q1
2+q2

2 for qi� �− ,� and
continued periodically otherwise. It is convenient to define
the gradient coefficient Aa and the shape coefficient D by

Aa =
1

2

�2

�l2 Pa�0,l,0��l=0 �A4�

and

D2 =
1

Aa
�Pa�0,,� − Pa�0,0,0�� . �A5�

Comparison between Figs. 13�a� and 13�b� shows that this
choice reproduces the mean-field result rather well. �Note
that Pa�0, ,� computed from Eqs. �A3�–�A5� deviates
slightly from the mean-field result for this momentum
choice.� The lowest-order perturbative contribution from the
fermions reads

Aa = �
Q

h̄a
2 �2

�l2� 1

PF
k �Q�PF

k �K + Q + 	�
�

l=0

. �A6�

For frequencies different from zero we set for all q,

Pa�� � 0,q� = m̄a
2�� − m̄a

2�k. �A7�

In practice, this means that we include the fluctuation effects
only for the zero Matsubara frequency mode. In the tempera-
ture range of interest in this work, this is a well-justified
approximation, cf. Fig. 12. On the other hand, truncation
�A7� is not suited for very low T and therefore limits the
temperature range for our investigation in the present paper.

Within the functional renormalization-group approach, we
describe the scale dependence of the inverse bosonic propa-
gator by flow equations for the parameters Aa and D. The
flow equation for the gradient coefficient is

�kAa = �
Q

h̄a
2�̃k

�2

�l2� 1

PF
k �Q�PF

k �K + Q + 	�
�

l=0

, �A8�

where K= �0, l ,0�. At the initial scale the gradient coefficient
vanishes Aa ��=0. The boson is not dynamic on this scale and
can be regarded as an auxiliary field. The difference
Pa�0, ,�− Pa�0,0 ,0� in Eq. �A5� is also scale dependent.
From this, and Eqs. �A5� and �A8�, one infers the flow equa-
tion for D. Again, D vanishes at the initial scale �. The result
of approximation �A3�, as calculated from the flow equation,
is displayed in Fig. 13�b�. Comparison with the one-loop
result in Fig. 13�a� shows satisfactory agreement.

The infrared cutoff Rk
a for the a boson is adapted to Eq.

�A3�. We use an “optimized cutoff,”35,52,53

Rk
a�Q� = Aak2 −

�q�2D2

D2 + �q�2��k2 −
�q�2D2

D2 + �q�2� . �A9�
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